Compare indices for fuzzy clusterings
comp.FKM.indices.Rdcomp.FKM.indices() compares the clustering indices of two more more
clusterings that are output from cluster.coefs() or cluster.fitted().
Arguments
- clusterings
A list object of the clusterings to compare. Each should be of class
'FKM.TPS'.- index
Desired cluster validity index or indices. Default is
"ALL". Options are:"PC","PE","MPC","SIL","SIL.F","XB", or"ALL". Multiple options can be input as a character vector. Seefclust::Fclust.index()- clusternames
Optional character vector with names of the clusters being compared.
Details
comp.FKM.indices() compares the clustering indices of two more more
clusterings that are output from cluster.coefs() or cluster.fitted().
Available indices are those found in the fclust package: PC
(partition coefficient), PE (partition entropy), MPC (modified partition
coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), and XB
(Xie-Beni). The default ALL gives all indices. See fclust::Fclust.index()
See also
Values for cluster validity indices are calculated using the
fclust package. See fclust::Fclust.index()
Examples
data(TS.sim)
fitsplines <- TPSfit(TS.sim, vars=c("Var1", "Var2", "Var3"), time="Time",
ID="SubjectID", knots_time=c(0, 91, 182, 273, 365), n_fit_times=10)
ccoefs_2 <- cluster.coefs(fitsplines, k=2, seed=1234, RS=10)
ccoefs_3 <- cluster.coefs(fitsplines, k=2, seed=1234, RS=10)
ccoefs_4 <- cluster.coefs(fitsplines, k=2, seed=1234, RS=10)
ccoefs_5 <- cluster.coefs(fitsplines, k=2, seed=1234, RS=10)
# Compare clusters using all indices and custom names
comp.FKM.indices(list(ccoefs_2, ccoefs_3, ccoefs_4, ccoefs_5),
clusternames=c("k=2", "k=3", "k=4", "k=5"))
#> PC PE MPC SIL SIL.F XB
#> k=2 0.6795184 0.2448186 0.3590367 0.2246924 0.2483164 0.858249
#> k=3 0.6795184 0.2448186 0.3590367 0.2246924 0.2483164 0.858249
#> k=4 0.6795184 0.2448186 0.3590367 0.2246924 0.2483164 0.858249
#> k=5 0.6795184 0.2448186 0.3590367 0.2246924 0.2483164 0.858249
# Compare clusterings using a subset of the indices
comp.FKM.indices(list(ccoefs_2, ccoefs_3, ccoefs_4, ccoefs_5),
clusternames=c("k=2", "k=3", "k=4", "k=5"), index=c("SIL.F", "XB"))
#> SIL.F XB
#> k=2 0.2483164 0.858249
#> k=3 0.2483164 0.858249
#> k=4 0.2483164 0.858249
#> k=5 0.2483164 0.858249